Home
|
Press
|
Events
|
Eshare
Sign in
/
Register
0
Shopping Cart
X
Close
My Products (0 items)
My shopping cart is empty.
.
Sign in
/
Register
X
Close
Login/Register
Email
Password
INDUSTRIES
Agriculture
Chemicals
Food & Feed
Pesticides
Titanium Dioxide (TiO2)
Dairy Products
Full Industry List
ONLINE DATABASE
PRICE FORECAST
PRODUCTS & SERVICE
Products' Introduction
Industrial Reports
Newsletters
Market Data
Content Byte
Agrochemical Regulatory
Customized solutions
IMPACT FACTOR
MARKET NEWS
Agriculture
Chemicals
Food & Feed
Other
ABOUT
About CCM
Why CCM?
CCM Story
CCM Clients
Events
Career
Company news
CONTACT
Home
Product
Complimentary download
Long-term nitrogen fertilizer use disrupts plant-microbe mutualisms
Recommend Report
Need some help to find your information ?
E-mail:
econtact@cnchemicals.com
Tel: +86-20-37616606
Search Report
Agriculture
Biotechnology
Chemicals
Economics and investment and financial
Energy and utilities
Food and Feed
Food and Feed (Ingredients)
Minerals/resources/mining
Pharmaceuticals and healthcare
Printing & packaging
More Reports >>
Recommend Newsletter
Related market data
Related product
Related research
Long-term nitrogen fertilizer use disrupts plant-microbe mutualisms
Keyword:
Publish time:
11
th
March, 2015
Source:
Champaign, Illinois, USA
Information collection and data processing: CCM For more information, please
contact us
Long-term
nitrogen
fertilizer
use disrupts plant-microbe mutualismsLong-term nitrogen fertilizer use disrupts plant-microbe mutualisms" title="Share this link on Facebook">Champaign, Illinois, USAFebruary 23, 2015University of Illinois plant biology professor Katy Heath and her colleagues found that long-term nitrogen fertilizer use disrupts the mutually beneficial relationship between legumes and soil microbes.-Photo by L. Brian StaufferWhen exposed to nitrogen fertilizer over a period of years, nitrogen-fixing bacteria called rhizobia evolve to become less beneficial to legumes – the plants they normally serve, researchers report in a new study.These findings, reported in the journal Evolution, may be of little interest to farmers, who generally grow only one type of plant and can always add more fertilizer to boost plant growth. But in natural areas adjacent to farmland, where fertilizer runoff occurs, or in areas where nitrogen oxides from the burning of fossil fuels settle, a change in the quality of soil rhizobia could have “far-reaching ecological and environmental consequences,” the researchers wrote. Soil microbes known as rhizobia supply much-needed nitrogen to legumes such as clover (Trifolium species). In return, legumes shelter the rhizobia in nodules on their roots and provide them with carbon. | Graphic by Julie McMahon“The nitrogen that we apply to agricultural fields doesn’t stay on those fields, and atmospheric nitrogen deposition doesn’t stay by the power plant that generates it,” said University of Illinois plant biology professor Katy Heath, who led the study with Jennifer Lau, of Michigan State University. “So this work is not just about a fertilized
soybean
field. Worldwide, the nitrogen cycle is off. We’ve changed it fundamentally.”Not that long ago, before the advent of industrial fertilizers and the widespread use of fossil fuels, soil nitrogen was a scarce commodity. Some plants, the legumes, found a way to procure the precious nitrogen they needed – from rhizobia.“The rhizobia fix nitrogen – from atmospheric nitrogen that we’re breathing in and out all the time – to plant-available forms,” Heath said. “Plants can’t just take it up from the atmosphere; they have to get it in the form of nitrate or
ammonium
.”In return, legumes shelter the rhizobia in their roots and supply them with carbon. This partnership benefits the bacteria and gives legumes an advantage in nitrogen-poor soils.Previous studies have shown that nitrogen fertilizers can affect the diversity of species that grow in natural areas, Heath said. In areas polluted with fertilizer runoff, for example, legumes decline while other plants become more common.In the new analysis, Heath and her colleagues looked at six long-term ecological research fields at Michigan State University’s Kellogg Biological Station. Two experimental plots were located in each of six different fields. One plot in each field had been fertilized with nitrogen for more than two decades; the other, a control plot, had never been fertilized.The researchers isolated rhizobia from the nodules of legumes in fertilized and unfertilized plots. In a greenhouse experiment, they tested how these bacteria influenced legume growth and health. The researchers found that the plants grown with the nitrogen-exposed rhizobia produced 17 to 30 percent less biomass and significantly less chlorophyll than plants grown with rhizobia from the unfertilized plots.A genetic analysis of the microbes revealed that the composition of the bacterial populations was similar between fertilized and unfertilized plots: The same families of rhizobia were present in each. But rhizobia from the fertilized plots had evolved in a way that made them less useful to the legumes, Heath said.“This study tells us something about mutualisms and how they evolved,” she said. “Mutualisms depend on this balance of trade between the partners, this special nitrogen-carbon economy in the soil, for example. And when the economy changes – say when nitrogen is no longer scarce – these mutualisms might go away.”The research team also included Dylan Weese, of Michigan State University and St. Ambrose University; and Bryn Dentinger, of the Royal Botanic Gardens, in Surrey, U.K.The National Science Foundation supported this research.More news from: University of IllinoisWebsite: http://www.cnchemicals.com/: March 11, 2015The news item on this page is copyright by the organization where it originatedFair use notice
Index Type:(required)
-- Please select --
Message:(required)
Name:(required)
Email:(required)
Tel:
Message:(required)
Name:(required)
Email:(required)
Tel: